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4 ABSTRACT 

5 Accurate estimates of continental-scale channel fows are needed to understand spatiotempo-

6 ral variability in water supplies and the water balance. At regional scales, models of connecting 

7 channel fows are commonly used to understand how variability in the water cycle propagates into 

8 engineering-oriented decisions related to water quantity and water quality management. Since 

9 1958, deterministic monthly fows have been calculated for all of the connecting channels of the 

10 Great Lakes - St. Lawrence River system through a binational, multi-agency coordination pro-

11 cess. Here, we review these historical estimates, most of which have never appeared (or appeared 

12 decades ago) in the peer-reviewed literature, and compare them to new estimates from a novel 

13 statistical water balance model. This new model was developed using a variety of water balance 

14 component estimates across the entire Great Lakes system, and includes an explicit expression of 

15 uncertainty. Our fndings indicate that the historical range of deterministic channel fow estimates 

16 is similar to the range of uncertainty represented by our statistical water balance model. We also 
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17 fnd that historical internationally-coordinated fows for this massive lake and river system from 

18 the late 1990s through 2009 appear to be negatively biased, and may need to be revised. Our new 

19 statistical water balance model provides an ideal platform for implementing this revision, and other 

20 future updates to regional water balance information. 

21 Keywords: channel fow; stage-discharge; uncertainty estimation; hydraulic model 

22 INTRODUCTION 

23 Monitoring and forecasting the water balance of large freshwater basins is a major challenge 

24 facing a range of engineering and scientifc disciplines (Nijssen et al. 2001; Shiklomanov et al. 

25 2006). Anthropogenic controls (Nilsson et al. 2005) and climate change (Milly et al. 2008) con-

26 tribute to variability in energy and mass fuxes across aquatic systems (Peterson et al. 2002; Dai 

27 and Trenberth 2002), and differentiating these drivers is critical to robust water resources manage-

28 ment planning. Accurately identifying origins of change in the water balance that lead to persistent 

29 water loss and drought, for example (Lofgren et al. 2013; Gronewold and Stow 2014), is a funda-

30 mental step in developing and implementing effective measures for ensuring sustainable long-term 

31 water supplies (Brown et al. 2011). 

32 Of the large freshwater systems in North America, the St. Lawrence River (including the Lau-

33 rentian Great Lakes) Basin is in many ways the most complex (fgure 1). The river has a mean 

34 annual fow of 12,600 cubic meters per second (cms) near Quebec City, representing the second 

35 highest river discharge from the continent (Benke and Cushing 2011). The water surfaces of the 

36 Great Lakes have a collective area of 244,000 km2 , constitute roughly 30% of the areal extent of 

37 the upper basin (i.e. the basin domain upstream of the outlet of Lake Ontario), and encompass a 

38 signifcant portion of the international border between the United States and Canada (fgure 1). 

39 Energy and mass fuxes across this system have a profound impact on the regional water balance 

40 (Lenters 2001; Quinn 2002; Assel et al. 2004) and climate (Notaro et al. 2015), and outfows from 

41 both Lake Superior and Lake Ontario are regulated under conditions of a US-Canada binational 

42 treaty administered by the International Joint Commission, or IJC (Lee et al. 1994; Clites and 

43 Quinn 2003). Finally, long-term dredging projects that maintain navigability in the channels that 
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44 connect the Great Lakes have induced permanent changes in conveyance, fow rates, and water 

45 level differential between upstream and downstream lakes (Quinn 1985; Derecki 1985). 

46 Over the past decade, there have been signifcant advances in monitoring and modeling the 

47 Great Lakes water balance that dovetail with legacy regional hydrometeorological data sets (Deacu 

48 et al. 2012; Hunter et al. 2015). Long-term continuous lake surface water elevation data from a net-

49 work of gauging stations, for example, is publicly available and considered very robust (Gronewold 

50 et al. 2013). Similarly, multiple research studies have explored and, in some cases, led to imple-

51 mentation of methods for improving estimates of over-lake precipitation (Watkins et al. 2007; 

52 Holman et al. 2012; Lespinas et al. 2015), over-lake evaporation (Spence et al. 2011; Blanken 

53 et al. 2011; Spence et al. 2013; Fujisaki-Manome et al. 2017), and lateral tributary runoff into the 

54 lakes (Fry et al. 2013; Fry et al. 2014; Gaborit et al. 2017). 

55 Here, we introduce a new approach to estimating monthly channel fows, using the Great Lakes 

56 as a representative case study. We compare and contrast our new approach to a set of legacy esti-

57 mates, including those derived through a regional binational partnership, and those derived through 

58 hydraulic engineering models. In addition to flling a gap in research on the regional water balance, 

59 our analysis of connecting channel fows addresses a need for better understanding of how changes 

60 in those fows affect lake temperature, heat content, and ice formation (Schwab et al. 1999), cir-

61 culation patterns (Beletsky et al. 2006; Anderson and Schwab 2013), water quality (Nichols et al. 

62 1991), and the spread of invasive species (Schloesser and Nalepa 1994) across the Great Lakes. 

63 We focus our study on the Detroit River because there are several ongoing research questions that 

64 need to be answered about long-term changes in its fow regime, its role in changing water level 

65 differentials between Lake Michigan-Huron and Lake Erie (Gronewold and Stow 2014), and its 

66 role in recent proliferation of toxic algal blooms in Lake Erie’s western basin (Quinn and Guerra 

67 1986; Michalak et al. 2013; Obenour et al. 2014). The methods we describe are not necessarily 

68 restricted to applications on the Detroit River and we hope that, in future research, they can be 

69 applied to other connecting channels not only within the St. Lawrence - Great Lakes Basin, but in 

70 other large riverine systems around the world as well. 
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71 METHODS 

72 To advance the state-of-the-art in regional hydraulic modeling and engineering practice, we 

73 introduce a new confguration of a recently-developed statistical water balance model for large lake 

74 systems (Gronewold et al. 2016). This model, commonly referred to as the Large Lake Statistical 

75 Water Balance Model (or L2SWBM), uses Bayesian inference to derive monthly channel fow 

76 estimates by resolving estimates of other water balance components (including, for example, over-

77 lake precipitation and over-lake evaporation) and their intrinsic biases and uncertainties. 

78 We then compare the new L2SWBM Detroit River fow estimates to those developed by the 

79 Coordinating Committee on Great Lakes Basic Hydraulic and Hydrologic Data (Gronewold and 

80 Fortin 2012; Gronewold et al. 2018). This ad hoc group (hereafter referred to as the ‘Coordi-

81 nating Committee’) of government science agency representatives from both the US and Canada 

82 was formed in 1953 and has historically used a combination of stage-fall-discharge (SFD) mod-

83 els, 1-dimensional hydraulic models, expert opinion regarding knowledge of in situ channel con-

84 ditions (including ice and weed formation), and other information sources to arrive at a single 

85 internationally-coordinated deterministic Detroit River discharge estimate. 

86 Finally, we provide a representative example of three SFD relationships (Shiono et al. 1999) 

87 that have either been used in historical studies, or have been considered for use by Great Lakes re-

88 gional water management practitioners and scientists (Quinn 1985), and are indicative of the mod-

89 els routinely evaluated by the Coordinating Committee. It is informative to note that application 

90 of SFD models to the Great Lakes, while a consistent component of regional water management 

91 practice, has rarely been documented in the peer-reviewed literature. There are also frequent de-

92 bates within the regional hydraulic science and engineering community over whether SFD model 

93 formulations should be constrained by engineering theory, or if more novel model formulations 

94 (including those representing uncertainty) should be used to explain in situ channel discharge mea-

95 surement variability. Our goal here is not to resolve these debates; rather, we intend to demonstrate 

96 that the intrinsic variability among alternate deterministic formulations of SFD relationships might 

97 be well explained by the variability expressed in a statistical water balance model. For further 
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98 reading on historical Detroit River fow estimates, see Brunk (1968) and Quinn (1978). 

99 Study area - Detroit River 

100 The Detroit River runs from the southern end of Lake St. Clair to the northwest corner of Lake 

101 Erie (fgure 2). It covers a distance of about 51 km, has a total fall of 0.9 m, and has an average 

102 discharge of roughly 5,200 cms. Most of the upper stretch of the river is a single narrow deep 

103 channel, while the lower reach (below Wyandotte) is broad with intermittent islands and shallows. 

104 Periodic maintenance dredging of the channel is needed to maintain a safe navigable depth. The 

105 lower portion of the river (from the Wyandotte to Gibraltar gauge) has not been used in discharge 

106 determination since the mid 1980s due to variability in channel roughness (and the challenges of 

107 quantifying that variability in models) related to proliferation of zebra and quagga mussels and 

108 subsequent changes in weed growth (Nalepa and Schloesser 1992) 

109 The bottom of the Detroit River channel is predominantly bedrock and clay, and it is therefore 

110 commonly assumed that there has been no change in the river’s conveyance following the com-

111 pletion of the last major navigation improvements (i.e. dredging) project in 1962 (Coordinating 

112 Committee 1988). Furthermore, a recent multi-year study commissioned by the IJC determined 

113 that while conveyance changes have taken place on the St. Clair River (between Lake Huron and 

114 Lake St. Clair) since the 1960s, there is no conclusive evidence of similar changes on the Detroit 

115 River (IJC 2009). These fndings have important implications for model development and testing. 

116 Data 

117 Historical in situ Detroit River discharge measurements have been collected since the 1860s 

118 across multiple intermittent feld campaigns, and along multiple reaches of the river (Coordinat-

119 ing Committee 1994). For this study, we employed measurements collected along the reach near 

120 Fort Wayne (fgure 2) starting in 1962 because they represent the longest set of continuous mea-

121 surements available since the conclusion of the navigation projects (Schmidt et al. 2009). More 

122 specifcally, between 1962 and 1986, 229 instantaneous fow measurements were collected across 

123 12 feld campaigns at the Fort Wayne cross-section (near the Ft. Wayne gauge, see fgure 2) by the 

124 U.S. Army Corps of Engineers (formerly the U.S. Lake Survey) using conventional mechanical 
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125 current meters. It is informative to note that measurements between 1962 and 1968 were collected 

126 by the U.S. Lake Survey from relatively heavy barges, while measurements between 1973 and 

127 1986 (using the same conventional meters) were collected by the U.S. Army Corps of Engineers 

128 from relatively light vessels; a discontinuity in monitoring protocol that may have contributed to 

129 variability in observed stage-discharge relationships. No fow measurements were collected in 

130 the Ft. Wayne cross-section of the river between 1986 and 1996. Beginning in 1996, fows were 

131 recorded by the U.S. Army Corps of Engineers using acoustic Doppler current proflers (ADCPs). 

132 Historical water level measurements were collected with the historical discharge measure-

133 ments at the Windmill Point (station 9044049) and Wyandotte (station 9044030) monitoring sta-

134 tions. These stations were originally installed by the U.S. Lake Survey in (respectively) 1897 

135 and 1930, and are now maintained by the National Oceanic and Atmospheric Administration 

136 (NOAA) National Ocean Service (NOS) Center for Operational Oceanographic Products and Ser-

137 vices (COOPS). Continuously recording gauges were installed in 1952 at Windmill Point, and in 

138 1957 at Wyandotte (Coordinating Committee 1978). The IJC, as part of its relatively recent Inter-

139 national Upper Great Lakes Study (IUGLS), maintains and distributes all but the fnal three years 

140 of historical discharge data and corresponding water level measurements through its web page; 

141 the 2007-2009 data are available from the US Army Corps of Engineers, Detroit District. We em-

142 ployed these historical records in the model calibration procedures described in the calibration and 

143 simulation section. 

144 For the simulation phase of our study, we utilized Windmill Point and Wyandotte water level 

145 data maintained and distributed by COOPS, however it is important to note that these stage records 

146 are available at different temporal resolutions and across different historical periods. For example, 

147 the COOPS historical records include nearly continuous hourly stage measurements at Windmill 

148 Point beginning in 1970, nearly continuous daily mean stage measurements beginning in 1950, 

149 and monthly mean stage measurements beginning in 1897. Similarly, continuous hourly stage 

150 measurements are available from COOPS at Wyandotte beginning in 1970, while continuous daily 

151 and monthly measurements are available beginning in 1962. We downloaded these datasets directly 
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152 from the COOPS web server. 

153 It is reasonable to assume that measurement procedures across these periods had varying de-

154 grees of bias and uncertainty. In addition, each campaign varied in length and intensity; during 

155 some campaigns, multiple measurements were collected on a single day, and measurements were 

156 repeated for several days in a row (fgure 3). In other periods, measurements were collected less 

157 frequently. Further discussion on our approach to addressing these inconsistencies is included in 

158 the calibration and simulation section. 

159 Statistical water balance model (L2SWBM) 

160 The focal point of our study is the development and evaluation of a new set of estimates of 

161 historical monthly Detroit River discharge using the L2SWBM (Gronewold et al. 2016). A pro-

162 totype of the L2SWBM was recently developed through a partnership between the NOAA Great 

163 Lakes Environmental Research Laboratory (GLERL) and the University of Michigan Coopera-

164 tive Institute for Great Lakes Research (CIGLR), and was designed to simulate Bayesian posterior 

165 probability distributions for each of the major components of the Great Lakes water balance at 

166 monthly time scales. An important feature of the L2SWBM is that it reconciles long-term mea-

167 surements of lake storage (using a simple lake water balance model) with readily-available sources 

168 of information (including measurements and process model-based estimates) of each water balance 

169 component. 

170 For this study, we ran the L2SWBM over a historical period from 1960 to 2015 across all 

171 of the Great Lakes. Specifcally, we ran two confgurations of the L2SWBM; we ran the frst 

172 (L2SWBM-A) independently of historical Detroit River estimates from the Coordinating Commit-

173 tee (described in the following section), and we ran the second (L2SWBM-B) with an assimila-

174 tion of those estimates. We compare these two confgurations to better understand the extent to 

175 which information about other components of the Great Lakes water balance might help reduce 

176 uncertainty and bias in estimates of Detroit River discharge, and the extent to which Coordinating 

177 Committee estimates are consistent with the L2SWBM (and, by association, with the entire Great 

178 Lakes water balance). 
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179 Internationally-coordinated estimates 

180 For the past several decades, the most widely-distributed estimates of historical Detroit River 

181 discharge are those developed by the Coordinating Committee. The methodology employed by 

182 this group, however, is not documented in the peer-reviewed literature, though it is distributed 

183 in publicly-available technical reports. In general, the Committee has aggregated a combination 

184 of SFD and unsteady fow models developed independently by US and Canadian federal agency 

185 representatives, and has then combined those estimates while considering the integrity of each 

186 individual model. It is also our understanding that the members of the Coordinating Committee 

187 typically use the lowest daily fow value as a proxy for the entire monthly fow average in periods 

188 when ice is prevalent and when the full suite of daily fow values may be biased. During other 

189 periods, the Committee has used estimates of St. Clair River discharge and water supplies to Lake 

190 St. Clair to estimate Detroit River discharge. We believe there is a need for the Coordinating 

191 Committee to more formally document these methods. In the following section, we provide a 

192 representative example of calculations for three types of SFD relationships that are either used, or 

193 considered for use by, the Coordinating Committee and other regional practitioners. 

194 Representative stage-fall-discharge (SFD) models 

195 SFD models: description 

196 Following common assumptions for wide channels with gradually varied fow (Bakhmeteff 

197 1932; Chow 1959; Quinn 1964; Schmidt and Yen 2008) in which backwater effects lead to different 

198 falls for a given depth (Hidayat et al. 2011), historical SFD-based models of Detroit River fow are 

199 often based (Fay and Kerslake 2009) on the following formulation (customized to the Windmill 

200 Point to Wyandotte reach) relating discharge (Q, in cms), stage (z, in m), and channel bottom 

201 elevation (y, in m): 

d f 
202 Q = c((zwp + zwy)/2 − ym) ∗ (zwp − zwy) (1) 
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203 where c is an empirical constant related to channel length and Manning’s roughness, and zwp and 

204 zwy are the surface water elevations at Windmill Point and Wyandotte, respectively (in meters). 

205 The fall (hereafter identifed as F ) is zwp − zwy, ym is the average elevation of the channel bottom 

206 in the Windmill Point to Wyandotte reach, and d and f are depth and fall exponents, respectively. 

207 Three modifcations of this model have either been deployed, or considered for deployment, 

208 in the Detroit River. The frst (which we hereafter refer to as the ‘multiple linear regression’ 

209 or ‘mlr’ method) follows the assumption that c, d, and f (equation 1) are unknown parameters, 

210 and that ym is 167m. We recognize that the assumption of a fxed value for ym has potential 

211 implications for estimates of other model parameters, however previous studies have used similar 

212 values (typically ranging between 164 and 168m). It is unlikely that alternate values, or that 

213 encoding ym as an uncertain parameter, would change the inferred value of the depth exponent d 

214 because the Detroit River is relatively deep. Taking the natural logarithm of both sides of equation 

215 1 yields the following: 

216 ln Q = ln c + d ln((zwp + zwy)/2 − 167) + f ln(zzp − zwy) (2) 

217 from which parameters c, d, and f can be estimated. Historically, these values have been estimated 

218 using classical regression techniques, however the specifc application of these methods to the 

219 Great Lakes is not well-documented in the peer-reviewed literature. 

220 Our second SFD model (hereafter referred to as the ‘Qn/Fn’ method) is based on relating 

221 ‘normal’ fall Fn (i.e. constant over time, with no backwater effects) to associated channel fows Qn 

222 as (Quinn 1964): 

223 Qn = c((zwp +   zwy)/2 − ym)
d ∗ F fn (3)

224 where ym = 167. Dividing equation 1 by equation 3 yields the following rating equation: 
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f 
225 Q/Qn = (F/Fn) (4) 

226 which allows estimates of Q for any given fall F , conditioned on a calculated value of Qn and 

227 Fn, and an estimate of f . To calculate Q for any given fall F , we estimated parameters c and d in 

228 equation 3 by taking the logarithm of both sides of equation 3 (in which Fn is a constant): 

229 ln Qn = ln c + d ln((zwp + zwy)/2 − ym) (5) 

230 and employing regression analyses procedures described in the calibration and simulation section. 

231 Next, we calculated average fall, Fn, and in doing so accommodated the observation (fgure 3) 

232 that the fall is not consistent over the period of record. More specifcally, we note a discernible 

233 change in fall for average stage values above and below roughly 175 m (fgure 4). We confrmed 

234 this observation using the changepoint package (Killick and Eckley 2014) in the R statistical 

235 software environment (R core team 2017), which indicated a value of Fn = 0.325 m for average 

236 stage values less than 175.1 m, and a value of Fn = 0.383 m for average stage values greater 

237 than or equal to 175.1 m. The change in fall through this section of the Detroit River most likely 

238 refects a natural change in its hydraulic regime above an elevation of 175 m due to an increase in 

239 channel surface width and depth at the Wyandotte end of the reach; the channel surface width at the 

240 Windmill Point end, in contrast, is constrained. Finally, we solve for f by taking the logarithm of 

241 both sides of equation 4, and employing linear regression procedures described in the calibration 

242 and simulation section. 

243 Our third variation of the SFD model is adapted from procedures outlined by the Interna-

244 tional Standards Organization (ISO) in Geneva, Switzerland (International Standards Organization 

245 2001). It is our understanding that this approach is being considered for operational implementa-

246 tion among regional water management authorities; this study provides one of the frst experimen-
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247 tal applications of the approach to the Great Lakes region. This approach uses two or more water 

248 level gauges, and empirical relationships between water level and discharge for a constant fall, to 

249 simulate fows. Rather than trying to ft the discharge to a single equation, a set of curves is derived 

250 and the relationship between the two curves is used to predict fow, based on the fall in the reach 

251 and the ratio of the discharge resulting from that fall. The relationship between gauge height and 

252 discharge forms the basis for adjusting the computed fow. Details of our ISO methodology are 

253 included in the Appendix. 

254 SFD models: calibration and simulation 

255 We calibrated (i.e. estimated parameter values for) each SFD model using the historical data 

256 described in the Data section, and the lm function (for ftting linear models using regression) in 

257 the R statistical software package (R core team 2017). While the hardware and software pack-

258 ages we employed for this step are (when compared to tools employed for historical Detroit River 

259 fows) relatively new, we made every effort to replicate the basic theory and modeling philosophies 

260 that have been employed, informally, in historical Great Lakes hydraulic engineering practice. We 

261 began by calibrating all models to the entire period of record. We then calibrated each model 

262 separately to the 1962 to 1986 period and the 1996 to 2009 period to accommodate potentially sig-

263 nifcant changes in observed SFD relationships. We recognize that more robust approaches might 

264 include explicit quantifcation and differentiation of measurement bias and uncertainty from model 

265 parameter uncertainty. Here, we followed a methodology that is consistent with conventional prac-

266 tice, and hope to implement alternative methods in future research. Our corresponding R code is 

267 included in the Appendix for reference. 

268 We used each calibrated model to simulate Detroit River discharge using the historical Wind-

269 mill Point (Station No. 9044049) and Wyandotte (Station No. 9044030) stage measurements de-

270 scribed in the Data section. These stage records are available at different temporal resolutions and 

271 across different historical periods. 

272 In light of the various temporal resolutions of historical stage data, we simulated Detroit River 

273 discharge with the SFD models using both daily and monthly stage measurements, while recogniz-
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274 ing that the parameters of our SFD models are conditioned on discharge measurements refecting 

275 channel conditions over a short (i.e. roughly hourly) time period. We use the currently available 

276 daily and monthly stage measurements to simulate discharge from the calibrated SFD models to 

277 follow what we believe to be conventional practice in the Great Lakes regional operational water 

278 management community. We also note that there are multiple missing daily stage values from the 

279 NOAA NOS COOPs record (about 130 out of the roughly 17,400 daily values between 1962 and 

280 2009 are missing). Rather than infll these values, we simply omitted from our results any months 

281 in which there was missing daily data. For months with a complete record of daily stage values, 

282 we simulated discharge for each corresponding day and then calculated the monthly average dis-

283 charge. We then used the monthly-average stage measurements to provide a basis for comparison 

284 and to assess the magnitude of bias and variability introduced when calibration data and simula-

285 tion data are aggregated to different temporal scales. One monthly gauge value was missing from 

286 the historical record (May 1977 for the Wyandotte gauge). We inflled this one value using linear 

287 interpolation. 

288 Finally, we recognize that explicit quantifcation of uncertainty in the SFD model-based simula-

289 tions is desirable (Westerberg et al. 2011; Domeneghetti et al. 2012). However, rather than express 

290 uncertainty in the SFD model results, we followed conventional practice by calculating determin-

291 istic SFD model simulations, and comparing them to the deterministic estimates developed by the 

292 Coordinating Committee and, ultimately, to the probabilistic results from the L2SWBM. 

293 RESULTS AND DISCUSSION 

294 A visual comparison between the time series of Detroit River discharge estimates from confg-

295 uration A of the L2SWBM (L2SWBM-A), from the Coordinating Committee, and from our three 

296 representative SFD algorithms (Figure 5) indicates that all fve estimates are relatively consistent, 

297 with two important exceptions. First, we note that the L2SWBM includes an explicit expression of 

298 uncertainty that, for most of the period of record, explains nearly all of the variability among the 

299 other four estimates. This fnding is important because it suggests that the uncertainty bounds of 

300 the L2SWBM encompass the range of outcomes from the SFD models. For further discussion, see 
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301 our comparison between SFD model simulations using daily and monthly average stage values, 

302 and our assessment of SFD model parameters in the Appendix. 

303 Second, we note the profound impact of seasonal ice formation in the Lake St. Clair corridor 

304 (Derecki and Quinn 1986; Derecki and Quinn 1987) and the varying degrees to which different 

305 modeling approaches refect those impacts. Through the 1960s, 1970s, and 1980s, for example, the 

306 internationally-coordinated estimates and the L2SWBM-A refect signifcant mid-winter declines 

307 in Detroit River discharge coinciding with ice formation, but in many years (e.g. 1976, 1977, 1978, 

308 and 1979) these dynamics are not refected in SFD models. We also observe a noticeable decline in 

309 the occurrence and severity of seasonal ice-related fow anomalies through the 1990s and 2000s in 

310 the L2SWBM and internationally-coordinated estimates. This fnding is consistent with previous 

311 research on changes in ice cover across the Great Lakes region over the past several decades (Wang 

312 et al. 2012; Bai et al. 2015; Mason et al. 2016). 

313 The intercomparison of the long-term time series from each discharge estimate (i.e. Figure 

314 5) also provides a basis for evaluating bias in historical estimates relative to the new L2SWBM 

315 estimates. We use the L2SWBM as a basis for assessing bias not only because it includes an ex-

316 pression of uncertainty (and therefore supports a probabilistic calculation of bias), but also because 

317 it was explicitly designed to be faithful to the long-term water balance of the entire Great Lakes 

318 system. Understanding how biases in historical Detroit River discharge estimates might lead to 

319 an imbalance in regional water supply simulations and forecasts is critical to improving long-term 

320 water resources management planning. 

321 An explicit graphical summary of bias (relative to the L2SWBM) over time (Figure 6) indicates 

322 that, throughout much of the 1960s, 1970s, and 1980s, the ISO model has a very strong positive 

323 bias, while from the late 1990s to 2009, all SFD models and the internationally-coordinated esti-

324 mates persistently underestimate discharge. Note that many of the spikes in positive bias for the 

325 SFD models coincide with ice-induced discharge anomalies. Bias in both the mlr model and Qn/Fn 

326 models (bottom-left and top-left, respectively, Figure 6) is less pronounced than in the ISO model 

327 from the early 1960s through the mid 1990s. 
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328 Some insight into the origins of relative bias in the SFD models can be derived from a com-

329 parison between simulated discharge from the calibrated SFD models (i.e. ftted discharge) and 

330 historical in situ discharge measurements (top panel, Figure 7). Inspection of the SFD model 

331 residuals (bottom panel, Figure 7) reveals these discontinuities and patterns more clearly, and in-

332 dicates that discontinuities in model skill over time might warrant separate models (or separate 

333 model calibrations) for different periods in the historical record. Indeed, it is our understand-

334 ing that the Coordinating Committee adopts this practice. Results of the SFD model calibration, 

335 however, while informative, serve as a basis for understanding only the skill of the SFD models 

336 in simulating the relatively sparse historical in situ discharge measurement record (i.e. Figure 3). 

337 For a related discussion on addressing discontinuities in stage-discharge relationships, see Gessler 

338 et al. (1998). 

339 Importantly, we fnd that the coordinated estimates (bottom-right, Figure 6), most likely due 

340 to the processes adopted by the Coordinating Committee, are unbiased relative to the L2SWBM-

341 A for most of the period from the late 1970s to the late 1990s. However, in the early 1960s 

342 and 2000s, the coordinated estimates appear to be negatively biased relative to the L2SWBM-A. 

343 The chronic relative bias in the SFD models and the internationally-coordinated estimates from 

344 the late 1990s through 2009 underscores the strong likelihood that the internationally-coordinated 

345 estimates (and the SFD models on which they are based) systematically underestimate discharge 

346 during this period. 

347 Developing water supply estimates that are faithful to a region’s long-term water balance should 

348 be a fundamental component of robust water resources management planning. Similar arguments 

349 have been proposed for ensuring fdelity with regional land-lake-atmosphere energy fuxes (Lof-

350 gren and Gronewold 2013; Lofgren et al. 2013). The hydraulic continuity of the Laurentian Great 

351 Lakes system provides an opportunity to test the relative benefts of modeling channel fows from 

352 a discrete channel-only perspective, to those from a holistic water balance perspective. Indeed, 

353 the tendency of the internationally-coordinated Detroit River discharge estimates to gravitate away 

354 from the values from the SFD models and towards the values from the L2SWBM suggests that the 
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355 international coordination process adds signifcant value. However, we fnd that even further value 

356 can be added by assimilating these internationally-coordinated values into the L2SWBM (Figure 

357 8). One of the benefts of this approach is the establishment of a new historical record with an 

358 explicit expression of uncertainty that is faithful to the regional water balance, and one in which 

359 uncertainties are signifcantly reduced relative to those from the L2SWBM-B. In future research, 

360 it will be important to assess how these uncertainties impact both bias and uncertainty in other 

361 L2SWBM-derived estimates of the major components of the regional water balance. 

362 CONCLUSIONS 

363 The established practice of running multiple independent models for simulating large channel 

364 fows, and then reconciling differences among those models through ad hoc negotiations within 

365 the Great Lakes modeling community, appears to be a reasonable but perhaps outdated approach to 

366 establishing a long-term historical record. This approach does, however, appear to be particularly 

367 effective in diminishing, but not entirely eliminating, sources of both decadal and seasonal (i.e. 

368 ice-related) biases in conventional SFD models. 

369 We have also shown that reconciliation of the long-term water balance across the Great Lakes 

370 system through application of the L2SWBM has a direct impact on historical channel fow esti-

371 mates. Using the newly-developed L2SWBM as a tool for blending multiple deterministic models 

372 into a probabilistic ensemble also represents a shift from the historical dialogue focusing on debates 

373 over approaches to appropriately selecting and calibrating SFD models, and quantifying uncer-

374 tainty in historical in situ data, to a more contemporary dialogue focused on appropriate weighting 

375 or discounting of multiple sources of information about the entire Great Lakes hydrologic cycle in 

376 a state-of-the-art statistical water balance model. 

377 Considerable effort might be put towards identifying appropriate methods for disaggregation of 

378 the historical records into different time periods (based on discontinuities in monitoring protocols), 

379 and that doing so can reduce long-term biases (see fgure 6, bottom right), however the value of 

380 this effort may diminish if probabilistic ensemble methods are employed. The L2SWBM has 

381 the additional advantage of extending over a long period of record, and of explicitly quantifying 
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382 time-varying uncertainty in each water balance component over that period. Finally, our analysis 

383 indicates that internationally coordinated fows appear to be underestimated in the Detroit River 

384 relative to the fow estimates from the L2SWBM for the period from the late 1990s through 2009. 

385 This fnding is important in part because the L2SWBM is, by design, faithful to the water balance of 

386 the entire Great Lakes system (including estimates of water balance components for precipitation 

387 and evaporation), and also because the L2SWBM and internationally coordinated fow estimates 

388 are rather consistent before this time period. We therefore suggest the Coordinating Committee 

389 consider recomputing fows for the late 1990s through 2009 using the L2SWBM-based approach 

390 prescribed in this study. 

391 SUPPLEMENTAL DATA 

392 An Appendix containing additional information on methodology is available online in the 

393 ASCE library (ascelibrary.org). 

394 DATA AVAILABILITY 

395 Some or all data, models, or code generated or used during the study are available from the 

396 corresponding author by request. 
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